
CPSC 440/540 Machine Learning (January-April, 2022)

Variational Autoencoders Assignment

1 “MLE” Derivation

Recall the Kullback-Leibler-divergence,

KL(p || q) = Ex∼p[log(p(x))− log(q(x))]

as well as the definition of the ELBO function,

ELBO(θ, φ) = Ez∼qφ(z | x)[log(p(x, z))− log(qφ(z | x))]

1.1 Evidence Lower Bound

Show that the ELBO function can be written as

ELBO(θ, φ) = Ez∼qφ(z | x)[log(p(x | z))]−KL(qφ(z | x) || p(z))

1.2 Log-Evidence

Starting from the KL-divergence between qφ(z | x) and p(z | x), derive the following formula for the log-
evidence:

log(p(x)) = ELBO(θ, φ) +KL(qφ(z | x) || p(z | x))

Hint: use Bayes rule on the p(z | x) term, along with the form of the ELBO function you derived in the
previous part

1.3 Loss Function

Looking at the formula from the previous part, we still have the intractable p(x) term lying around in the
KL-divergence term. However, we can safely ignore the KL(qφ(z | x) || p(z | x)) term. Recall from the
lecture that ELBO is supposed to be a lower bound for the log evidence, ELBO ≤ log(p(x)). This allows us
to try to maximize the evidence by instead maximizing ELBO.

Your task is to prove that ELBO is indeed a lower bound for log(p(x)). Observing the formula for the
log-evidence you derived in 1.2, notice that if we can show the KL-divergence term is nonnegative, then we
will have proven ELBO ≤ log(p(x)). Show that the KL-divergence between any two distributions is always
nonnegative, KL(p || q) ≥ 0.

Hint: Start by showing KL(p || q) = Ex∼p

[
− log

(
q(x)
p(x)

)]
and apply Jensen’s inequality. (2.12 in the link)
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https://bookdown.org/ts_robinson1994/10_fundamental_theorems_for_econometrics/exp-ineq.html


2 Short Answer

1. Why do VAEs tend to perform better at generating new samples compared to traditional autoencoders?

2. Write a function in Julia or Python which uses the reparametrization trick for sampling z from qφ(z | x)
and submit the code.

3. What is the main advantage of β-VAEs as opposed to VAEs?

4. Suppose we have a perfect optimization algorithm which can find a unique maximum of the ELBO
function. If we maximize ELBO in this manner, have we necessarily found a maximum of log(p(x))?
Why or why not?
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Solutions

“MLE” Derivation

Evidence Lower Bound

Show that the ELBO function can be written as

ELBO(θ, φ) = Ez∼qφ(z | x)[log(p(x | z))]−KL(qφ(z | x) || p(z))

Answer: Applying the chain rule p(x, z) = p(x | z)p(z), we obtain

ELBO(θ, φ) = Ez∼qφ(z | x)[log(p(x, z))− log(qφ(z | x))]

= Ez∼qφ(z | x)[log(p(x | z)) + log(p(z))− log(qφ(z | x))]

= Ez∼qφ(z | x)[log(p(x | z))]− Ez∼qφ(z | x)[log(qφ(z | x))− log(p(z))]

= Ez∼qφ(z | x)[log(p(x | z))]−KL(qφ(z | x) || p(z))

Log-Evidence

Starting from the KL-divergence between qφ(z | x) and p(z | x), derive the following formula for the log-
evidence:

log(p(x)) = ELBO(θ, φ) +KL(qφ(z | x) || p(z | x))

Hint: use Bayes rule on the p(z | x) term, along with the form of the ELBO function you derived in the
previous part

Answer: Using Bayes rule p(z | x) = p(x | z)p(z)
p(x) , we obtain

KL(qφ(z | x) || p(z | x)) = Ez∼qφ(z | x)[log(qφ(z | x))− log(p(z | x))]

= Ez∼qφ(z | x)[log(qφ(z | x))− log(p(x | z))− log(p(z)) + log(p(x))]

= KL(qφ(z | x) || p(z))− Ez∼qφ(z | x)[log(p(x | z)) + log(p(x))]

= KL(qφ(z | x) || p(z))− Ez∼qφ(z | x)[log(p(x | z))] + log(p(x))

where, in the final line, p(x) is taken out of the expectation because it is independent of z. Recalling from
our previous work that ELBO(θ, φ) = Ez∼qφ(z | x)[log(p(x | z))]−KL(qφ(z | x) || p(z)), we have

KL(qφ(z | x) || p(z | x)) = −ELBO(θ, φ) + log(p(x))

Rearranging for the log-evidence,

log(p(x)) = ELBO(θ, φ) +KL(qφ(z | x) || p(z | x))
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Loss Function

Looking at the formula from the previous part, we still have the intractable p(x) term lying around in the
KL-divergence term. However, we can safely ignore the KL(qφ(z | x) || p(z | x)) term. Recall from the
lecture that ELBO is supposed to be a lower bound for the log evidence, ELBO ≤ log(p(x)). This allows us
to try to maximize the evidence by instead maximizing ELBO.

Your task is to prove that ELBO is indeed a lower bound for log(p(x)). Observing the formula for the
log-evidence you derived in 1.2, notice that if we can show the KL-divergence term is nonnegative, then we
will have proven ELBO ≤ log(p(x)). Show that the KL-divergence between any two distributions is always
nonnegative, KL(p || q) ≥ 0.

Hint: Start by showing KL(p || q) = Ex∼p

[
− log

(
q(x)
p(x)

)]
and apply Jensen’s inequality. (2.12 in the link)

Answer: Jensen’s inequality states that for any convex function ϕ, we have E[ϕ(x)] ≥ ϕ(E[x]). Since − log
is convex, we obtain

KL(p || q) = Ex∼p [log(p(x))− log(q(x))]

= Ex∼p

[
− log

(
q(x)

p(x)

)]
≥ − log(Ex∼p

[(
q(x)

p(x)

)]
)

= − log

(∫
p(x)

q(x)

p(x)
dx

)
= − log(1)

= 0
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Short Answer

1. Why do VAEs tend to perform better at generating new samples compared to traditional autoencoders?

Answer: Traditional autoencoders have no regularization; they are simply designed to reproduce data
sets as well as possible. This leads to overfitting, in the sense that latent vectors become highly
“specialized” - certain latent vectors z reconstruct the data very well, but a randomly chosen latent
vector might produce nonsensical data. VAEs on the other hand use latent distributions, and have a
regularizing term from the KL-divergence which prevents the distributions from overfitting by straying
to far from N (0, 1).

2. Write a function in Julia or Python which uses the reparametrization trick for sampling z from qφ(z | x)
and submit the code.

function renormalize(mu, Sigma)

d = length(mu)

eps = randn(d,1)

ch = cholesky(Sigma)

A = ch.L

z = A*eps + mu

return z

end

3. What is the main advantage of β-VAEs as opposed to VAEs?

Answer: β-VAEs allow for controllability of the regularization strength, and the β hyper-parameter
can be tuned to increase disentanglement.

4. Suppose we have a perfect optimization algorithm which can find a unique maximum of the ELBO
function. If we maximize ELBO in this manner, have we necessarily found a maximum of log(p(x))?
Why or why not?

Answer: No, not necessarily. Increasing ELBO only guarantees that we are increasing the smallest
possible value log(p(x)) can take, since ELBO ≤ log(p(x)). However, it is entirely possible that ELBO
is maximized for some values θ, φ, while log(p(x)) is maximized for some completely different values
(θ′, φ′).
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