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Motivation

Ordinary autoencoders
® Convolutional layers reduce input data z into latent vector representation z.
® Generate new data: pick a point z in latent space, push through decoder.
® Potential for overfitting.

® Nearby points in latent space can produce different results.
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Motivation

Variational Autoencoders (VAEs)

® Represent the latent variable z as a distribution
z~p(z| z)

® Draw a random sample z, then push it through the decoder.

® Nearby points in latent space produce similar data when pushed through decoder.
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Model Definition

® Similar to autoencoders, VAEs have an encoder, decoder, and bottleneck layer.
® The latent vector z is not learned directly.

® Instead the parameters of the distribution are learned.
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General framework

VAEs are deep generative models.

Use evidence maximization, i.e. maximizing p(z).

Evidence can be calculated with
oo = [ o] Ip()d:

where the integral is over the possible values of z in the latent space.

Exponential time to calculate p(z) (must evaluate all configurations).
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General framework

Simplifying Assumptions:
® Decoder (likelihood):
po(z| 2) = N(flz0),0°])

Function fto be learned by decoder network weights/biases . o is hyper-parameter.

¢ Encoder: p(z| X) can be approximated by

46(2 | ) = N(u(z, 9), X(x, ¢))

Weights/biases ¢ are learned by encoder network.
e Latent Prior: p(z) = N(0,1).
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General framework

Q: How can we force p(z| z) = g4(2| 2)?
A: The Kullback-Leibler (KL) - divergence measures how different two distributions p;

and po are:
KL(p1 || p2) := Eop, (log(p1(z)) — log(pa2(2)))

We will try to force p(z| z) = g4(z| ) by minimizing the KL-divergence between them.
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Loss Function

Want to learn best p and ¥ for encoder distribution gy (z | ') = N (u(a, ¢), (2, ¢)):
q(z | x) = argming KL(qy(z | ) || p(2 ] 7))
Intractable due to p(z) term which shows up in KL-divergence:

KL(gs(z | ) [| p(2] 7)) = Eoogy(z) 2 [l08(gp(2 | 7)) —log(p(z, 2)) + log(p(2))]
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Loss Function

Instead, maximize the evidence p(z). After some manipulation (to be done on the
assignment):

KL(qp(2| 2) [| p(2| 7)) = Eomgy(z) o [log(gs(z | 2)) — log(p(z, 2))] + log(p(z))

Solving for log(p(z)):

log(p(2)) = Eovgy(z| o)[l0g(p(z, 2) —log(gs(2 | 2))] + KL(gs(2 | 2) || p(2| 7))
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Loss Function

(Continued) Log-evidence to be maximized:

log(p(7)) = Eogy(z| o llog(p(z, 2)) —log(gs(2 | 2))] + KL(gy(2 | 7) || p(2 | 7))

Expectation term on RHS is called “ELBO” function.
Issue: p(z) still appears in KL term like before! (Hard to calculate).

® However, we can now safely ignore the KL term. Why?

KL-divergence is nonnegative, so log(p(z)) > ELBO.

Our goal is to maximize ELBO, which therefore will increase log(p(z) > ELBO!
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C(MLE??

ELBO can be manipulated (to be done on assignment) into the following form:

ELBOZ(G, ¢) - Ez~q¢(z\ zt) [log(pg(fb ‘ Z))] - ]C[’((M)(Z’ xl) H p(z))

The negative of this is the loss for a single training example 1.
¢ “Evidence Lower BOund” - Satisfies ELBO(z) < log(p(z)).
¢ Instead of maximizing log(p(z)) directly like in MLE (intractable), maximize ELBO.

® Can be viewed as modified or approximate “MLE".
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Interpretation of the Loss Function

Loss function:

—ELBOi(0,¢) = —E,_q,(:| 2 [log(po(z" | 2))] + KL(gp(2] 2) || p(2))

Interpretation:
® First term: reconstruction error (minimize NLL expected under our distribution gy).

® Second term: regularization (minimize KL-divergence).
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The Role of Regularization

Regularization is provided by the KL(gg(z | z%) || p(2)) term.
® KL-divergence penalizes qy(z | z) for getting too far from p(z) = N(0,1)).

Without KL regularization, model learns Gaussians g, (2 | ) with very low variance

® Low variance Gaussian is just a “spike” at a particular point in latent space.

This makes it practically deterministic, like an ordinary autoencoder.

This regularization is how VAEs prevent this overfitting.
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The Role of Regularization

Figure: Latent distributions. Left: no regularization. Right: regularization. Source:
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-70510919£73

Each 2' gets its own Gaussian distribution gy (z | 2°).

® On left: learned Gaussians are sharp and far apart from each other.
® QOverfitting - Nonsense data generated from latent vectors between distributions.
[

On right: broader distributions. Keeps the distributions close together.

Latent vectors between distributions produce more realistic data.
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Training

Loss function:

—ELBO; (9 ¢) z~q¢(z| zt) [log(pg( ’ Z))] + Kﬁ(q¢(z‘ xl) H p(z))
How do we train? Remember our simplifying assumptions:
* go(z]af) = N(u(a',¢),0%(a", 9))

* po(a’ | 2) = N(f(z,¢),0%)
* p(2) = N(0,1)
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Training

Loss function:

_ELBOl(Ha (b) - _Ez~q¢(z| ) [log(pg(x’ ’ z))] + IC'C(Q¢(Z | xz) H p(z))

Computing first term on RHS:

® Draw a few (or sometimes just one) samples
2~ go(z] o)

e Approximate the expectation using Monte Carlo.
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Training

Loss function:

~ELBO(0, ¢) = — g, (x| o log(pa(a’ | 2))] + KL(g0(2 | 2') || p(2))

Computing second term on RHS:
e Just the KL-divergence between two Gaussians.

e Has a closed form:

KLN (p1, 21) || N (p2, X2))

X ) ) )
=3 (Tr(22 ") 4 (k2 — 1) 25 (42 — ) — k+ log (:Ej:»

where k is the dimension of the distributions.
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Training

Loss function:

~ELBO;(6, ¢) = —E,vq, (| o [l08(po (2" | 2))] + KL(g5(2 | 2°) || p(2))

Problem:
® Drawing samples z ~ g,(z | 2°) to estimate the expectation on RHS.
® This is not a differentiable step.
e Can’t backpropagate error for SGD!
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Reparametrization Trick

Solution: Final step is to use the reparametrization trick:

Draw a sample ¢ ~ N (0, 1).

z= Ae + p will be distributed as N (u, ATA).

Use Cholesky decomposition ¥ = AT A to get the desired A.
This is a differentiable step! All the randomness comes from e.
Remember

4o(z | 2) = N (u(z, ¢), £(x, ¢))

so A(2%, ¢) and (', $) depend on network parameters.
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Reparametrization Trick
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Figure: Left: Without reparametrization trick. Right: with reparametrization trick. Source:
https://arxiv.org/pdf/1606.05908.pdf
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Inference: Generating New Samples

Latent space can be used to generate new samples.

Goal is to generate data that looks like training, but is different.

Simply sample a random z and push it through the decoder.

Hopefully looks like new sample thanks to regularization term KL(gy(2 | 2) || p(2)).
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Inference: Generating New MNIST Samples
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Figure: MNIST digits created with a VAE. Source: https://arxiv.org/pdf/1312.6114.pdf

® Look like slightly blurry digits. This is a drawback of VAEs.

® The noise from sampling z tends to produce blurry images compared to GANs.
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Inference: Generating New Chemical Samples
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Figure: Creating new molecules similar to a given molecule. a) normal autoencoder. b) variational
autoencoder. Source: https://www.researchgate.net/figure/The-autoencoder-and-the-variational-
autoencoder-a-An-autoencoder-encodes-input ;ig3343786548
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Application: Retina Disease

retina-VAE: Variationally Decoding the Spectrum of
Macular Disease

Stephen G. Odaibo*
(1) Department of Machine Learing Rescarch
RETINA-AI Health, Inc.
(2) Department of Head & Neck Surgery
Ophthalmology Section
MD Anderson Cancer Center
stephen.odaibo@retina-ai.com

Uses VAE to gain insights into macular disease.

Generated 3,000 “patient profile vector” samples z° using simulated clinical data.

Trained a VAE with 3-dimensional latent space.

Found 14 well-defined clusters when plotting the latent vectors.

Classified clusters using k-means.

Different clusters might respond better to different treatments.
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Application: Retina Disease

Figure: Left: normal retina. Right: macular degeneration. Source:
https://arxiv.org/pdf/1907.05195.pdf
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Application: Retina Disease

Figure: 14 clusters of the 3d latent vectors sampled from g4(z| z). Source:
https://arxiv.org/pdf/1907.05195.pdf
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Bayesian Variational Autoencoders

BVAESs place a prior over the network parameters 6.

Estimate the marginal likelihood using

p(E| ) o / / 203 | Ap(2)p(0 | ) dadb

There are various tricks for implementing BVAEs. See e.g.
https://arxiv.org/pdf/1912.05651.pdf.

Can perform better on outlier detection tasks than ordinary VAEs.
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Modification: S-VAEs

® 3-VAEs are a generalization of VAEs.

® Hyperparameter [ controls regularization strength:

Loss = —EZN%(Z‘ ) [log(Pa(l‘i | 2)] + ﬁICE(q¢(z | 371) Il p(2))

e 3-VAEs allow for training with a special emphasis on disentanglement.
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Disentanglement

® Phenomenon where latent vector components are highly interpretable.
® Changing one component of a latent vector only affects one part of output data.

e Well-chosen (3 values (typically 8 > 1) lead to increased disentanglement.

(a) Skin colour

Figure: Changes to one component of the latent vector z produce interpretable changes in the
output data.
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Supervised Variational Autoencoders

® In supervised learning, the decoder is not used.

® Given new data Z, we encode it as a latent distribution gg(z| ).

We can then connect bottleneck to an output layer of our choosing.

e For example, could use a categorical estimator in final layer

p(y | z) = Categorical(y | 7 (u(2, ¢), ¥(Z, ¢), ))

where 74 is a probability vector learned by the network.
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Supervised Variational Autoencoders

(a) Row collision. (b) Untraversable obstacle. (c) Traversable obstacle.

Figure: Supervised VAE used in a self-driving toy car trained for anomaly detection in terrain
types using LiDAR data. Source: https://arxiv.org/pdf/2012.08637.pdf
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Summary

® VAEs are deep generative models.

® Same architecture are autoencoders, but uses latent distribution.

® Regularization from KL-divergence allows for more realistic sampling.
® Use the reparametrization trick so that all steps are differentiable.

® With some effort, can achieve interpretability through disentanglement.

® Downside: the random nature of the latent vectors tends to lead to “blurrier” samples
compared to GANs.
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